Cell, Tumor, and Stem Cell Biology p73 and p63 Sustain Cellular Growth by Transcriptional Activation of Cell Cycle Progression Genes

نویسندگان

  • Konstantinos Lefkimmiatis
  • Mariano Francesco Caratozzolo
  • Paola Merlo
  • Anna Maria D'Erchia
  • Beatriz Navarro
  • Massimo Levrero
  • Elisabetta Sbisa
  • Apollonia Tullo
چکیده

Despite extensive studies on the role of tumor suppressor p53 protein and its homologues, p73 and p63, following their overexpression or cellular stress, very little is known about the regulation of the three proteins in cells during physiologic cell cycle progression. We report a role for p73 and p63 in supporting cellular proliferation through the transcriptional activation of the genes involved in G1-S and G2-M progression. We found that in MCF-7 cells, p73 and p63, but not p53, are modulated during the cell cycle with a peak in S phase, and their silencing determines a significant suppression of proliferation compared with the control. Chromatin immunoprecipitation analysis shows that in cycling cells, p73 and p63 are bound to the p53-responsive elements (RE) present in the regulatory region of cell cycle progression genes. On the contrary, when the cells are arrested in G0-G1, p73 detaches from the REs and it is replaced by p53, which represses the expression of these genes. When the cells move in S phase, p73 is recruited again and p53 is displaced or is weakly bound to the REs. These data open new possibilities for understanding the involvement of p73 and p63 in cancer. The elevated concentrations of p73 and p63 found in many cancers could cause the aberrant activation of cell growth progression genes and therefore contribute to cancer initiation or progression under certain conditions. [Cancer Res 2009;69(22):OF1–9]

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

p73 and p63 sustain cellular growth by transcriptional activation of cell cycle progression genes.

Despite extensive studies on the role of tumor suppressor p53 protein and its homologues, p73 and p63, following their overexpression or cellular stress, very little is known about the regulation of the three proteins in cells during physiologic cell cycle progression. We report a role for p73 and p63 in supporting cellular proliferation through the transcriptional activation of the genes invol...

متن کامل

Production and functional characterization of human insulin-like growth factor 1

Insulin-like growth factor 1 (IGF-1) is a polypeptide hormone produced mainly by the liver in response to the endocrine growth hormone (GH) stimulus. This protein is involved in a wide range of cellular functions, including cellular differentiation, transformation, apoptosis suppression, migration and cell-cycle progression and other metabolic processes. In the current study, human heart cDNA w...

متن کامل

p53 family update: p73 and p63 develop their own identities.

Introduction p53 continues to be one of the most intensively studied genes in cancer biology. p53 was initially identified .20 years ago as a binding partner for the SV40 T oncoprotein. Further studies revealed that p53 is a tumor suppressor gene that is mutated or inactivated in .50% of human cancers. Furthermore, germ-line p53 mutations cause hereditary cancer in both mice and humans. Molecul...

متن کامل

Tumor-specific p73 up-regulation mediates p63 dependence in squamous cell carcinoma.

p63 is essential for normal epithelial development and is overexpressed in the vast majority of squamous cell carcinomas (SCC). Recent work had shown that DeltaNp63alpha is essential for survival of SCC cells, raising the possibility that the p63 pathway may be an attractive therapeutic target in these tumors. Nevertheless, it is unknown whether a therapeutic window exists for inhibiting p63 in...

متن کامل

Expression of pluripotent stem cell markers in mouse uterine tissue during estrous cycle

It was assumed that uterine stem cells are responsible for the unique regenerative capacity of uterine. Therefore, the aim of the present study was to investigate the expression of the pluripotent stem cell markers in the mice uterine tissue during different stages of estrous cycles. Twelve virgin female NMRI mice (6 to 8 weeks old) were considered at proestrus, estrus, metestrus and diestrus a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009